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ABSTRACT:Spatial solitons are formed in 

photovoltaic-photorefractive materials where 

diffraction of an optical beam is exactly 

compensated by nonlinear self-focusing due to the 

photovoltaic field and electro-optic effect. These 

solitons may have steady-state irradiances of 

microwatts to milliwatts per square centimeter and 

widths as small as 10μm in lithium niobate. Soliton 

We need to investigate MNLSE using linear 

stability analysis which gives us the growth rate 

instability and the parameter domain where optical 

control of spatial solitons takes place. In this paper, 

we have to describe how refractive index changes 

when a light beam is propagating in photovoltaic-

photorefractive materials or optical fiber. The 

propagation of light beam in nonlinear media leads 

to the formation of solitons (temporal or spatial 

solitons)[1]. From space charge field and nonlinear 

Helmholtz wave equation, we re-derive Modified 

nonlinear Schrödinger equation (MNLSE). The 

MNLSE contains the nonlinearity parameters , 

  and  which may cause the formation of spatial 

solitons and the parameter  influencing the 

bending of the trajectory of solitons. We need to 

use linear stability analysis to study the instability 

due to the parameters and  . We have to set 

some criterial under which a given perturbation 

leads to the modulation instability in the system. 

KEYWORDS:Spatial solitons, perturbation, non-

linear media, instability, Modified non-linear 

Schrödinger equation. 

 

I. INTRODUCTION 
In the middle of the 19th century, Zabusky 

and Kruskal(Miki, 2001) gave the name solitary 

waves to particles which can undergo elastic 

collision and their speeds, wavelengths, amplitudes 

and shapes remain invariant[2]. This new theory 

attracted many scientists to carry out the research 

about it. Solitons were found to be solutions of 

integrable partial differential equations applicable 

in communications, electronic devices, etc.In the 

context of optics, this type of light waves 

propagating a long distance without losing their 

shape and initial behaviours are also used in optical 

fibers to carry information over a long distance 

with energy loss low compared to copper cables. 

There are two different kinds of solitons depend on 

the balance between nonlinearity effect and 

diffraction or dispersion phenomenon in that 

media. When the nonlinearity effect balances the 

dispersion phenomenon, soliton formed are 

temporal in that case is known as temporal soliton 

but when nonlinearity effect balances the 

diffraction phenomenon a soliton formed is spatial 

solitons[3]. The spatial soliton wave moves in 

nonlinear media keeping its dimension and its 

shape invariant (see Fig. 1). In contrast to normal 

light (Fig. 2), it keeps all its original physical 

behaviourswhen it is propagating in 

inhomogeneous nonlinear media[4]. When optical 

soliton is propagating in fiber, it is a solitary wave 

governed by the nonlinear Schrödinger equation 

(NLSE) and its variant[5]. This curious special 

optical beams that propagate without diffraction 

attracted many researchers to improve their 

knowledge about it. A soliton wave is different 

from the natural electromagnetic wave[1]. 

 
Fig. 1 propagation of optical soliton. 

(Fig. 1)Propagation of optical solitons moving in 

homogeneous linear medium, where it can 

diffract in different directions, reflect and 

refract according to the material it hits and 

depending on the material refractive index. 

Among the nonlinear 

 

 
Fig. 2 Light diffracts when it is propagating in 

linear homogeneous media [4] 

 

media which cause the formation of 

solitons are photorefractive materials. In 1965, 
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Arthur Ashkin and his colleagues were dealing 

with experiments in their laboratories, using 

lithium niobate and laser beam to convert laser 

light (which is intense) from one color to another 

color using the second harmonic generation 

process[6],[7]. Photovoltaic-photorefractive 

materials present the change in refractive index 

when light beam is applied on them[8]. This makes 

the materials a support of solitons. In this section, 

we want to re-derive the modified nonlinear 

Schrödinger equation which is the model equation 

governing the solitons in Photovoltaic-

photorefractive materials. For this, starting with the 

continuity equation for charges and Maxwell's 

equations, we obtain the wave and Helmholtz 

equations. Considering a laser field with space 

dependent amplitude, we exploit the space-

dependence of the refractive index change to obtain 

the modified nonlinear Schrödinger equation. The 

linear stability analysis is used to examine the 

modulation instability in the system, and then to get 

the instability gain as well as the parameter domain 

where solitons may be formed. Finally, we present 

the numerical tool that may help to perform direct 

simulation of the model equation. 

 

II. THEORETICAL MODEL 
2.0 Introduction 

Photovoltaic-photorefractive materials 

present the change in refractive index when light 

beam is applied on them. This makes the materials 

a support of solitons. In this section, we want to re-

derive the modified nonlinear Schrödinger equation 

which is the model equation governing the solitons 

in photovoltaic-photorefractive materials. For this, 

starting with the continuity equation for charges 

and Maxwell's equations, we obtain the wave and 

Helmholtz equations. 

 

2.1 Space charge field 

Space charge field. The space charge field 

is produced after applying the photon on 

photovoltaic photorefractive material where the 

charge space distribution takes place with 

dependence on intensity of light applied[9]. 

 

 
Fig. 3 Space charge field formation [10] 

 

When a light beam illuminates the 

photovoltaic-photorefractive material 

(photoionization), a photon causes the electrons to 

move from valence band to the conduction band 

where there is own of electrons. When illumination 

is removed on the material, recombination takes 

place. The field between photoionization and 

recombination (see Fig. 3) is space charge field. 

The induced space charge field Esc can be obtained 

from the standard set of rate, donor ionization rate 

equation, electro continuity equation, current 

density (J) equation.  

Continuity equation for immobile donors = 

generation (GR) minus recombination (R)[11]. 

(s I )( )D R i r D D R DN G B N N NN
t

  
    



         (1)   

Where N
+

D, si, I, BT, ND andɣR, Nare densitiesof 

ionized donor, photoexcitation cross section, 

optical intensity, dark generation rate, total donor 

density, recombination rate and density of 

electrons[7].  

Continuity equation of electrons    

1
.DN N J

t t e

 
  

 

 
( 2 ) 

Gauss‟lawgives 

. ( )
D A

E e NN N 


    
 

( 3) 

Current density equation = Drift + Diffusion + 

photogalvanic[11] 

J e
B phe e

EN T Nk J     (4) 

Where  
( )

D D
p

si IphJ k N N



, and I is 

the intensity of light, e, 
scE , 

Bk , T,  , J  and 

AN  are densities of electron, electron charge, 

space charge field, Boltzmann constant, 

temperature, dielectric constant, current density and 

acceptor density, respectively. At constant 

illumination, we have steady state equations, where 

time constant, implying that 0N
t





, 

0
Dt

N




 and Id  is the irradiance intensity[7].  

From Eq. (1),
  si I I N Nd D D

NR D

N


 


 (5) 

   From Eq. (2), 0 r sc
AD

E
N N

e x
N

  
  



    (6) 

Introducing Eq. (6) into Eq. (5), we get,  

  0

0

1

1

r sc
d D A

A

r sc
R A

E
si I I N N N

eN x
N

E
N N

e x

 

 


  
     

  
   

   
  

   (7) 
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If 
,,A A DN N N N N N    and

A DN N  , this implies that N in right hand side 

of Eq. (7) can be neglected,    

  0

0

1

1

r sc
d D A

A

r sc
R A

E
si I I N N

eN x
N

E
N

e x

 

 


  
    

  
 

 
 

    (8) 

The beam intensity varies slowly with respect to 

the coordinate x that is why
scE

o
x





.  Then the 

terms containing 
scE

x




 are very small as follows

0 1r sc

A

E

eN x

  


 .  

 The Eq. (8) becomes 

  d D A

R A

si I I N N
N

N

 
  (9) 

Where there is constant illumination. Thus intensity 

( ,z)xI  becomes constant value, x  that is 

( )xI I   and 0( )scE x E  . This 

leads to   

  
0

d D A

R A

si I I N N
N

N

  
   (10) 

At the crystal borders (edges) x , 

the intensity of light is constant and does not 

depends on position x. then, 
00 0eN eJ E , where

0( )N x N  and 0( )E x E  , the 

quantity 0E  which is external field to the 

photorefractive crystal and 0N  are the constants. 

Also it is known that ( ) 0 0x eJ N e E  implying 

that (0) 0 0eJ N e E , where ( )xJ  is current 

density which depends on x while 0J  is constant 

current density[12]. From Eq. (4), we obtain  . 

( )e sc B e p i D D

N
J e NE k T k s N N I

x
  

   


.     (11) 

We substitute 
0

e

J

e
 which is equal to 0 oN E  as we 

have in Eq. (12) below: 

0 oN E  = 0

e

J

e
= ( )

p i

sc B D D

e

k sN
NE k T N N I

x e


  


 

(12) 

From Eq. (12), we have  

0

1
( )

p i

sc o B D D

e

k sN
E N E k T N N I

N x e
 

    
 

.  (13) 

  Let us calculate the derivative of N with respect to 

x,  

( )i D D

R A

s N NN I

x N x

 


 

. (14) 

Replacing Eq. (14), Eq. (10) and Eq. (1) in Eq. (13) 

gives [12] 

0

1d B
sc p

d d d

I I k T I I
E E E

I I e I I x I I


  

   
    

 (15) 

Where B A
p

e

k N
E

e




 .   

Let us assume that I I , i.e the intensity at the 

beam axis I is very high than the intensity at the 

edge I  of the crystal, which is negligible 

compared to the one at the axis of the crystal. We 

can substitute the relation I I I  . By replacing 

I its value in Eq. (15) gives[9]and[12] 

0

1d B
sc p

d d d

I I k T I II
E E E

I I e I I x I I

 
  

   
    

    (16) 

 

2.2 Wave and Helmholtz equation 

Considering the linear medium, Maxwell‟s 

equations are  

Gauss „law: .E



 
   (17) 

Gauss „law: . 0B 
 

 (18) 

Faraday‟s law: B
E

t


  




 

(19) 

Ampere-Maxwell‟s law:  

E
B J

t
 


  




  

  (20) 

With 
eJ e NE E  

  
, 

0, r    

and 
0 r   , 

0 , 
r , 

0 , 
r ,  are the 

permittivity of free space, the relative permittivity 

of free space, the permeability of free space, the 

relative permeability of free space and the 

conductivity of the medium, respectively. The 

Ampere- Maxwell‟s Eq. (20) can be rewritten as  

E
B J

t
 


  




  

.   

   (21) 

By calculating the curl of both sides of Eq. (21), we 

get  
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 ( ) .
E

E E
t t


 



  
      

  


     . (22) 

For homogenous media, we have ( ) 0



 
 and 

Eq. (22) becomes   
2

2

2

E E
E

t t
 

 
  

 

 


 .  (23) 

When ,   and   are independent, we get  
2

2

2

E E
E

t t
 

 
  

 

 
 .  (24) 

This is the wave equation in the 

conducting material[13]. The monochromatic 

waves have the same frequency and the fields have 

harmonic time dependence
i te 

. Let us take time 

dependence is such that (x, y, z) i tE E e 


. Then 

replacing this equation in Eq. (24) leads to 
2 2 0E k E  
 

,  (25) 

When 2 2 ( 1)k
i


 


  . 

The equality 
2k is the square complex 

number[14].  When 1
i




 , then 

2k is purely 

imaginary and when  1
i




  , 

2k  is real. The 

Eq. (25) is the Helmholtz equation. [15]When a 

light wave propagates in a material, its speed is 

v
n

c
 , which implies that 

0

n
k nk

v v

 
    

Let us replace k by its value in Eq. (25), we obtain 

0
ˆ(k n)E 0E  

  
,  (26) 

where 0k nk  which is wave number of the wave 

in material [9]. Let us assume that the field is 

(k )(x, z)ei z t  , with 2
k




 . The light beam is 

only allowed to diffract along x direction which is 

implying that there is no motion of light beam 

along y direction. The perturbed extra-ordinary 

refractive index (overall refractive index of the 

photorefractive material when the intensity of light 

is applied on it given as  
2 4ˆ
e e e scn n n r E  ,  (27) 

where en  is the unperturbed extra-ordinary 

refractive index[14]. From nonlinear Helmholtz 

equation, we can derive the parabolic equation. Let 

us replace (k )ˆ (x, z) ei z tE x  


into Eq. (26), 

where   is slowly varying amplitude of electric 

field.  From nonlinear Helmholtz equation, we have  

 

2 (k ) 2 (k )

0
ˆ(x,z)e ( n) (x,z)e 0i z t i z tk     



.   (28) 

After second derivative and replacing Eq. (27) in 

Eq. (28) and then divide by
(k )ei z t

, we neglect 

the second derivative in z (slowly amplitude 

approximation), 2

2

d d

dz dz

 


, we obtain  

2
2 4

02
( , ) 2 ( , ) k ( , ) 0e e scx z ik x z n r E x z

x z
  

 
  

 

  (29) 

From Eq. (29), Helmholtz equation is  
2

2

02

0

1 1
( , ) ( , ) ( , ) 0

2 2
e e sc

e

i x z x z k n r E x z
z k n x
  

 
  

 

,

 (30) 

Which is a parabolic equation from nonlinear 

Helmholtz equation. 

 

2.3 Modified nonlinear Schrödinger equation 

The modified nonlinear Schrödinger equation can 

be obtained by replacing space charge field Eq. 

(16) into parabolic equation from Helmholtz 

equation Eq. (30) gives 
2

2

0 02

0

1 1 1
0

2 2

d B
e e p

e d d d

I I k T I II
i k n r E E

z k n x I I e I I x I I
   

     
              

.

  (31) 

It leads to 
2 2 2

2 2 2

1 (1 ) ( | | ) | |
0

2 1 |1| 1 | A | 1 | |

    
    

     

A A
i A A A A

s A s

  
 



 ,   (32) 

where 
0, phE E  is an external field and 

photovoltaic field respectively, 
2

0 0e

z

k n x
  , 

0

x
s

x
 ,

4
2 0

0 0( )( ) E
2

e
p

n r
k x  , 

4
2 0

0 0( )
2

en r E
k x  ,

d

I

I
  ,

4

0 0

2

e e Bk x r n k T

e
  , 

02

e

d

n
A

I





 and 

0
0

0







, 
0x  is the width of the soliton beam, 

x  is the position and   is the propagation 

distance. Eq. (32) is the modified nonlinear 

Schrödinger equation (MNLSE)[16]. Solitons can 

bend depending on the parameter . 

 

2.4 Linear stability Analysis 

The parameters ,   are used to control 

generation of solitons and the parameter  is 

associated to the diffusion term. By neglecting   

and , Eq. (32) becomes[12] 
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2 2

2 2

1 ( | | )

2 1 | A |

A
i A A A

s






  
  

  
.     (33) 

 

For dark screening solitons, I  must be finite 

hence  also must be finite. Eq. (33) will guide us 

to the soliton formation. If we use the ansatz as 

perturbation solution:  
( )

0( ) i ksA A e    ,             (34) 

where ( ,s)   , 0A  is the real 

constant amplitude of waves,   is the perturbation 

and   is the phase of the perturbed solution. 

Replacing Eq. (34) in Eq. (33) and neglecting the 

terms containing higher order than one in   and 

 
of the new equation obtained after replacement, 

it leads us on equation describing the dynamics of 

the perturbation, 
2 2 42

0 0 0 0

2 2 2 2 2 2 2 2 2

0 0 0 0

( ) ( )1
0

2 (1 ) (1 ) (1 ) (1 )

A A A A
i ik

s s A A A A

        
 



      
        

       

. 

(35) 

We can simplify this notation in order to facilitate 

the process of perturbation.  
2

2

1
( )

2
i ik

s s

  
 



  
     

  

 ,

     (36) 

where 
2 2 4 2

0 0 0 0

2 2 2 2 2 2 2 2

0 0 0 0

(1 )
(1 ) (1 ) (1 ) (1 )

 
      

    


A A A A

A A A A
   

.

 (37) 

Let us take perturbation amplitude as  

1 2i    ,  (38) 

where 1 , 2   , and substitute Eq. (38) in  

Eq. (36) leads us to  
2

1 2 1 2 1 2 1 2 1 22

1
( ) ( ) ( ) ( ( )

2
i i ik i i i i

s s
         



  
         

  
.

 (39) 

If we separate realand imaginary parts from Eq. 

(39) gives [12] 
2

2
1 1 2

1

2
k

s s


 



 
  

  

, (40) 

and
2

1
2 2 12

1
2

2
k

s s


  



 
   

  
 .

  (41) 

The following expressions can facilitate to know 

the variation of perturbation. 

 i(qs )

1 1 1 cos( )eR U e U qs   

  (42) 

 i(qs )

2 2 2Im sin( )U e U qs   

  (43) 

where
1U and 

2U are possible amplitude of 

perturbation, 
1U , 

2U  , ( )qs   is the 

modulation phase, q is the phase number and   is 

the frequency modulation. Replacing Eq. (42) and 

Eq. (40) and then after we simplify, it gives, 

2

1 2

1
( kq) U

2
q U 

.             (44) 

Let us substitute Eq. (42) and Eq. (43) in Eq. (41) 

and simplify, we obtain   

2

2 1

1
( kq) U 2

2
q U

 
    

 

. (45) 

Eq. (44) and Eq. (45) are forming the system of 

equations which are leading to determinant equal to 

zero, for getting more solutions 

2 2 21
( kq) q ( 2 )

4
q    . (46) 

Eq. (45) is known as dispersion relation. 

 

2.5 Modulation instability 

From Eq. (46), it is possible to obtain the 

parameter domain where occurs modulation 

instability. Modulation instability is the process in 

which weak perturbation can grow exponentially 

when it propagates in media which nonlinear. 

When a continuous wave propagate in nonlinear 

media, at some distance, it starts to be unstable, 

which causes the disintegration of plane waves into 

a larger number and leads to the breaking up into 

many filaments of optical pulses. Modulation 

instability is the result of reciprocity between 

nonlinearity of media and the dispersion of waves 

[12. During the modulation instability process the 

waves disintegrate into a large number of waves 

which results in the creation of soliton waves[1]. 

Modulation instability is used to study some 

physical behaviors of systems such as fluids, 

plasma, optical fibers, etc .If  
2 2 0q    ,          (47) 

from dispersion relation in Eq. (46), the frequency 

of modulation is a real number. It is leading to non-

instability which is not concerning our work. If 
2 2 0q    ,  (48) 

The frequency of modulation has real and 

imaginary parts, when imaginary part of the non-

modulation frequency in non-nil, conducts to the 

exponential increase of the amplitude of the 

perturbation, such case, we have  
1

2 2 2
1

[ ( 4 )]
2

i q q kq       .       (49) 

The imaginary part of the modulation 

frequency   causes an exponential growth of 

amplitude. During this process of instability of 

modulation, solitons are formed. The modulation 

instability gain g has dependence on q,   and  , 
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since it is known from that ( , )    . The 

modulation instability gain can be defined from the 

imaginary part of the modulation frequency as 

 

2 21
| Im | ( 4 )

2
G q q       (50) 

 
III. CONCLUSION AND 

RECOMMENDATION 
The full model includes four Parameters 

that contribute to the nonlinearity of the system, 

and therefore may all impact the soliton formation. 

However, to simplify the calculations, we 

considered only two parameters,  and  . It will 

be important to consider the other parameters, 

and  in further research work and use simulation 

in order to show how these parameters have effect 

on soliton formation.. This may allow to check how 

solitons bend when they are propagating in 

nonlinear media. Wavenumbers satisfying 
2 4q    are unstable, and can cause the 

formation of solitons. We have also determined the 

modulation instability gain which appears to 

depend on the parameters . For a given , the 

maximum gain is obtained for the wavenumber

2mq    . 
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